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Abstract 

We consider the hydrogen atom within the context of a theory of relativistic quantum 
mechanics that allows for a probabilistic interpretation of the wave function. We find the 
radial equation that determines the energy levels of bound states, represented by quasi- 
stationary states. We compute the order of magnitude of the shifts from the usual 
spectrum obtained from the Dirac equation, and we find that the leading terms for these 
corrections are of the order of ~61og~ for s-states and ~6 for other states. They are small 
compared to the Lamb shift, which is of the order of ~5 log ~. 

1. Introduction 

The energy spectrum of the hydrogen a tom obtained from the Dirac 
equation is in excellent agreement with experimental results, especially when 
corrected for effects of  the nuclear spin and the radiation field. Nevertheless, 
we have been unable to find a consistent interpretation of the corresponding 
wave functions along the lines of  the probability amplitudes of  non- 
relativistic quantum mechanics. 

On the other hand, we have developed a probabilistic interpretation of 
relativistic quantum mechanics, which leads to the notion of quasi- 
stationary states to describe bound states (Marx, 1970, Walter & Marx, 
1971). I t  is related to the use of  causal Green functions and the specification 
of initial and final conditions (Marx, 1969). 

In Section 2 we find the corresponding radial equation and reduce it to a 
Fredholm integral equation. Since the solution of either equation appears 
to be difficult and we already have the corresponding solutions of  the Dirac 
equation, we use the latter to estimate the shift in the levels due to this 
different approach~ in Section 3 we find that they are of  the order of  ~6 log 
for s-states and of  the order of  ~6 for the others. This gives a small correction 
to the Lamb shift, which is of  the order of  ~51og~, and comes from the 
consideration of a dynamical radiation field. We collect some of the 
mathematical derivations and formulas in an Appendix. 
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We use natural units and the time-favoring metric. Other details on 
notations can be found in Marx (1969, 1970) and Waiter & Marx (1971). 

2. Eigenvalue Problem for Quasi-Stationary States 
We start our discussion of the energy spectrum of the hydrogen atom 

from the Dirac equation 

(-i 7. D + m) r = 0 (2.1) 

where 

D~, = O, - leA, (2.2) 

Ao(x) = e/r, A(x) = 0 (2.3) 

We rewrite this equation in terms of the probability amplitude g(x), which 
is related to ~b(x) by a free-field Foldy-Wouthuysen transformation (Foldy 
& Wouthuysen, 1950; Bjorken & Drell, 1964; Marx, 1969) 

g(x) = [(E + m)/(ZE)] 1/2 [1 - iy .V/(s  + m)] r (2.4) 

where/~ is the integral operator 

E" = (p2 + m2)1/2, p = - iV  (2.5) 

and equation (2.1) becomes 

i~,(x) = H' g(x) (2.6) 

where 

-H+ 
H' = \H_+(H++ H_-) (2.7) 

.z[ff.+m~ln[1 , w.p 1 a.p ~(ff.+m] '/2 
US-U] !,7  +mrE+m1  2g / (2.8) 

H+-=H-+=e2[ff'+m~l/2(l\~] \r ff-+a'Pm ff_,+~'Pm ~) (ff~+rn~l/2\~] (2.9) 

In order to have a conserved charge instead of a conserved 'probability', 
we modify the Dirac equation by replacing H' in equation (2.6) by 

(H++ H+_) (2.10) 
H =  \H_+ H_ 

We obtain the energy spectrum of the bound states from the eigenvalue 
equation 

H++qr = Eqr (2.11) 

This equation is much more difficult to solve than the usual ones found in 
quantum mechanics due to the presence of the operator Ein H++. It is still 
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possible, though, to separate the angular and radial parts of the equation, 
since the angular momentum operatort  

J = x ^ p + �89 (2.12) 

commutes with H++. We consequently can write (Rose, 1961; Bjorken & 
Drell, 1964; Akhiezer & Berestetskii, 1965) 

q(+)(x) = a(r) ~/Y=l +_ 1/2(0, r (2.13) 
where:~ 

( [ ( J •  rn)'/z/(ZJ)l/2] YF-1/2(O' r ~ (2.14) 
@'~n=t-+ 1/2(0' 4>) = ~:s ::F m)llZl(2j) '/2] Y~+l/2(O, (o)] 

We use equation (A.4) to show that a function of /7  gives 

~b(~) [a(r) ~.=,+_,/2(0, r = dd/y=t• r ~(/7,) a(r) (2.15) 

where the operator ~(J~t) is defined in equation (A.5), and we recall that 

a.pa(r ) ~/~m(O, r = ~_~m(O, r i[d/dr + (I + K)/r ] a(r) (2.16) 
where 

~c=q: ( j + � 8 9  f o r j = l z k � 8 9  (2.17) 

We note that x determines bo th j  and l, since we can rewrite equation (2.17) 
as 

[ I - � 8 9 1 8 9  for Jr  (2.18) 
J =  [ I+ �89  - ~ - � 8 9  for ~c < 0 

We substitute equation (2.13) into equation (2.11) and use equations (2.15) 
and (2.16) to obtain the radial equation for a given value of K (independent 
of  m), 

H,~ a(r) = Ea(r) (2.19) 
where 

+ e2[2E,(A~l + in)] -1/2 [_r - I  d2ldr  2 - r - 2 d l d r  
+ (1 + K)2r -3] [2/7,(E, + m)] -u2 (2.20) 

The complicated properties of  the operator/7t do not allow us to solve this 
equation by an expansion in powers ofr .  We can change its form somewhat 
by replacing a(r) and H~ by r and r162 -l respectively, 
or by using (H~) 2 to find E 2, but we have not been able to find the eigenvalues 
and eigenfunctions in this way. 

I We note that x is the correct choice for the position operator in the Foldy- Wouthuysen 
representation, and similarly the angular momentum operator is given by equation (2.12). 
These matters are discussed in more detail in Schr6der (1964) and Marx (1968). 

:~ We use the sign convention of Rose (1961) and Akhiezer & Berestetskii (1965), 
while the signs in ~J~=z-~/2 are reversed by Bjorken & Drell (1964). We also think that no 
confusion should arise from the use of the letter m for both the mass of the electron and 
the magnetic quantum number. 
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We can rewrite equation (2.19) in still another form, in terms of a spherical 
Hankel transform of a(r), 

it becomes 

where 

a(K) = (2/~r) 1/2 f r 2 drj,(Kr)a(r) (2.21) 
0 

co 

K 2 dKH~(K', K) a(K) = Ea(K') (2.22) 
0 

H~(K', K) = (2/7r) j r 2 drj~(K' r) Hjt(Kr)  (2.23) 
0 

We can calculate the integral in equation (2.23) with the help of equations t 
(A.7), (A.9), (A. 10), (E'-8.11.9), (E-2.8.18), (E-2.8.33), (E-2.8.36), (E-3.2.45) 
and (E-3.3.2); we find 

H,r K) = (ko/K z) 3(K - K') + H~,,(K', K) (2.24) 

where 

Hz,~(K,,K)=_ e.~_2 [[(ko + m)(ko ' + m)l'/2 1 n [ K2 + K'=I 
J 

1 ],,2[K2+K,2 [K2+K% 
+ [(ko + m) (ko' + m) ko ko"J I_- 2-KK7 Q' I ~_~K ~ ] 

+(1  (1+~)2~ IK2-K'2[ (K2 + K'2]]t 
l(1T1-)] 2g.I~" Qtl\  2/~K ~ ~JJ (2.25) 

where 
ko = (K z + m2) I/2, k0' = (K '2 + m2) 1/2 (2.26) 

and Qt and Q1 are Legendre and associated Legendre functions of the 
second kind. The function H~(K',K) is symmetric in K and K', which is 
expected from the Hermitian nature of H§ We substitute equation (2.24) 
into equation (2.22) to obtain 

a(K') = ( E -  k0') -1 ; K 2 dKHz~(K', K)5(K) (2.27) 
o 

which is a homogeneous Fredholm equation of the second kind (Morse & 
Feshbach, 1953). It has nontrivial solutions only for certain values of the 
parameter E, which are the energy levels of the quasi-stationary states. 

1 The letter E preceding an equation number indicates that it belongs to Erd61yi (1953), 
while E' refers to Erd61yi (1954). 



QUASI-STATIONARY STATES OF HYDROGEN 255 

3. Lowest Order Approximation to the Level Shifts 

Since the eigenvalue problem discussed in the previous section does not 
appear to have a simple solution, we now take advantage of our knowledge 
of the solutions of the Dirac equation for the hydrogen atom in the case of 
stationary states to compute the small shifts to the levels of the quasi- 
stationary states. In particular, we compute the order of magnitude of these 
shifts for the 2sl/2 and 2pi/2 levels, and find that they are small compared to 
the Lamb shift. 

The energy spectrum for the hydrogen atom obtained from stationary 
states is given by 

E,~ = m[1 + ~2(n' + 7)-2] -1/2 (3.1) 

where ~ is the fine-structure constant and 

n '  = n - Ix [  ( 3 . 2 )  

7 = ( Kz - c~2) 1/2 (3.3) 

We see that the value of the energy depends only on [xl, that is, it depends 
o n j  but not on 1, bringing about the degeneracy that is lifted by the Lamb 
shift. The wave functions for these states are 

~b,~,,(x) = { g(r) ~m(O, 4) ~ (3.4) 
I, if(r) ~_Z(O, 4)] 

wheret f and g can be expressed in terms of confluent hypergeometric 
functions by 

f ( r )  = -N(1 - W) 1/2 (2Ar) e-1 exp [-Ar] (F1 + F2) (3.5) 

g(r) = N(1 + W) 1/2 (2Ar)7-I exp [-Ar] ( - f l  + F2) (3.6) 

where 

N = (Aim) 2 {2/~(27 + n' + 1)/[n' !a(~m/h - ~c)]}x/2//'(27 + 1) (3.7) 

W =  Eo/m (3.8) 

a = ~Eo/(n' + 7) (3.9) 

Fl(2~r) = n 'F(-n '  + 1,27 + 1,2Ar) (3.10) 

F2(2hr) = (~m/h - x) F(-n' ,  27 + 1,2~r) (3.11) 

the hypergeometric functions in equations (3.10) and (3.11) are polynomials 
in r. We then determine q(0+)(x) and q(0-)(x), where the subindex indicates 
that they correspond to stationary states, by means of equation (2.4), to be 

qr0+)(x ) = [(/~+ m)/(2ff~)] 1/2 [g~o/K " + i(ff~ + m) -I ~.pf~J_~"] (3.12) 

q(0-)(X) = [(/~-1- m)/(2JE)]  1/2 [i f~J ~c m - -  (J~-]- m) -1 ~,pg~/~c  m] (3.13) 

t We have dropped the indices n and • f romfand g, and we designate the corresponding 
E,~ simply by Eo, the 'unperturbed' energy level. 
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We use equations (2.15), (2.16) and 

df/dr = (• - 1) f i r  - (Eo - m + ~ / r ) g  (3.14) 

dg/dr = (Eo + m + o~/r)f  - (to + 1)g/r  (3.15) 

to reduce them to the form 

q~o+)(x )=~m[( f f~+m) / (2 f f~ )]~ /2[ l  + ( f f ~ + m ) - l ( E o - m + e / r ) ] g  (3.16) 

qCo-)(x) = i~_~"[(E i + m)/(2ff~z)] ~/2 [1 - (/7 z + m) -~ (Eo + m + ~/ r ) ] f  (3.17) 

where i is given by equation (A. 12). These functions satisfy 

H+ ~+~ ~r ~r = Eoq~o+) (3.18) +t/0 - - . . + _ t / 0  

which we obtain from equation (2.6). We assume that these eigenfunctions 
and eigenvalues do not differ much from those for quasi-stationary states, 
and we write 

q (+)(x) = q r + ~q (+)(x) (3.19) 

E = Eo + ~E (3.20) 

We multiply both sides of equation (2.11) by qCo+)* and integrate to obtain 

f d3 x(qCo+)t H+_q~o -) + qCo-)* Ht+_~q(+)) 

= (3E) f d3x(q~o+)tq~o+) + q~o-)* 3q (+)) (3.21) 

where we have used equation (3.18) and the Hermitian property of H++. We 
neglect small terms to obtain the lowest order correction for the energy 
level, 

~E ~ f d 3 xq~o +)t H+_q~o -) (3.22) 

since the normalization of ~b implies that q ~o +) is normalized to lowest order, 
We substitute q~o +) and qr -) from equations (3.16) and (3.17), we use 
equations (2.15), (2.16), (A.11), (3.14) and (3.15), we integrate over the 
angles and use integration by parts to obtain 

oo 

3E ~ �88 f r 2 d r { g ( s  + Eo + =/r)E-~ 1 r - l  
0 

• E71(/~l + rn) -1 [(J~z -- Eo - c~[r)(Eo - rn + c~/r)g - ~f /r  2] 

- [f(Eo + rn + ~/r)  (ff~i + Eo + c~/r) - o~g/r 2] 

• (ff~ + m) -I E71 r -I  E71(ff~7 - Eo - ~ / r ) f )  (3.23) 

We now change the variable of integration to 

p = ~mr  (3.24) 
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and subst i tutefand g from equations (3.5) and (3.6) to find 

8E ,,~ �88 -1 N2m ~f p2 dp(2A'p)7-1 exp [-A'p] 
0 

• {(1 q- W)  1/2 ( - F  1 q- Fz) (4  + W +  a2/p) •7' p-1 ~71 

x ( 4 +  1)-' [ ( 4  - w -  o~21p)(w- ~ - ~2Ip)(1 + v / )  '/2 

• ( -F,  + 1;'2)+ (0:3/p2)(1 - W)'/2(Fa + F2) ] -  [(1 - W) u2 

x (r,  + F 2 ) ( W +  1 + a2/p)(~ + W+a2/p) 

"4- (o~3/p 2) (1 -{- W) 1/2 (--F, + F2)] (~  + 2)-' d~ -1 p-' g/1 

X ( ~ / - -  W - -  ~2/p) (1 --  W ) I / i ( F I  "Jr- F2)} (2;Vp)Y-* exp [-h'p] (3.25) 

where the argument of FI and F2 has been changed to 21'0, we use the 
operator 4 which is defined in equation (A. 13) and we have set 

)t' = ),/(am) = W/(n' + y) (3.26) 

We can now try a straightforward expansion in powers of ~, keeping only 
the lowest order terms. In particular, we expand the operator 4 ,  using 
equation (A.7), and find 

4 = 1 + �89 + l(I + 1)p-21 + . . .  (3.27) 

which leads to a correct results in some cases, and to apparent divergences 
in others.t The resulting expression for the energy shift is 

8E ~ 4 I'd-2 n -21'd-a n'![(n + I KI) ! (n - ,01-1 me6 

x ~f dpp 1KI-3 exp [-p/n] {(-A~ + A2) [(_p2 d2/dp2 
o 

-Jr- l 2 "4- l+ p2/1r - -  2p) (2n 2 -- p)(-A~ + A2) + 2np(A~ + A2)] 
- (A, + A2)(-p2d2/dp 2 + i 2 + i+ p2/n2 - 2p)p 

x (A1 + A2)}p I'd-1 exp [-p/n] (3.28) 

where we have expressed the confluent hypergeometric functions in terms 
of Laguerre polynomials:~ 

A, = (n + l,~l)L2,,J~_~(2p/n) (3.29) 

As = (n - K)L]JKI(2p/n) (3.30) 

t We can obtain logarithmic divergences, as seen below, or linear divergences as in the 
calculation of the norm of qo ~-) shown in the Appendix. 

:[: We have chosen the normalization of the Laguerre polynomials of Erd61yi (1953), not 
that of Morse & Feshbach (1953). 
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It is possible to carry out the integration t in equation (3.28), but the general 
result is of little interest. We first study the behavior of the integrand near 
the origin. For s-states, we have 

= -1 ,  I =  0, i =  1 (3.31) 

and the integrand of equation (3.28) goes as p-i for small p, whence the 
integral diverges logarithmically, and we have to go back to equation (3.25). 
For p~/2-states, we have 

~c = 1, I = 1, i = 0 (3.32) 

and a cancellation of the constant terms in - A  1 + A 2 avoids this divergence 
problem. A similar conclusion is reached for all other states, due to the 
higher values of I 1. 

We conclude from the analysis above that the leading term in the 
expansion of 8E for s-states has the form a610g a, and we make a rough 
estimate of the integral in order to obtain the coefficient. We expand as 
before, but we keep only the lowest powers in p together with one of the 
factors g0 or #1 in the denominator, in order to obtain a convergent integral. 
The result for the 2sl/2 level is 

3E ~ - 2 -4ma  6 f pdpexp [-�89 ( 2 ~  1 + ~i-1)p-2exp [-�89 (3.33) 
o 

We use equation (A. 13) and do the integrations over p and p' with the help 
of equation (E'-8.6.6) to obtain 

co 

3E ,,~ -�89 6 f dK(i + a2 K2)-I/2 K 
0 

2 -1/2 -1/2 4K2)-1/2] • (1 -}- 4K2) -1 {Pi-]/2[(] + 4K ) ]P-~/2[(1 + 

2 - 1 [ 2  --3]2 + P~32/2[(1 + 4K ) ] P-1/2[(1 + 4K2)-~/2]) (3.34) 

where P f  are associated Legendre functions. There are no problems of 
convergence at K = 0, as we can see from equations (E-3.9.8), and we start 
the integral at K = 1 to obtain the coefficient of log a from the behavior of 
the integrand at large K. We have 

= 

p-__]~22(0 ) = (rr/2)'/2 

P ; ? J 2 ( o )  = 

= ' / 2  

(3.35) 
(3.36) 
(3.37) 
(3.38) 

t We can use the equations on pp. 784 and 785 of Morse & Feshbach (1953), with some 
minor changes due to the different normalization, 
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from equation (E-3.4.20), where we can use equation (E-1.2.6) to find the 
value of the indeterminate expression obtained in the cases of equations 
(3.36) and (3.37). The integral we obtain is that in equation (A.20), and our 
final result is 

~E ~ - (3/16) m~ 6 log ~ (3.39) 

On the other hand, we can find the shift of  the 2pl/2 level from equation 
(3.24), and we obtain 

~E ~ (1/192) m ~  6 (3.40) 

which is much smaller and of the opposite sign than the one for the 2s~/2 
level. 

These results imply a small correction to the Lamb shift, which is of the 
order of ~5 log o~ and is due mainly to the properties of a dynamical electro- 
magnetic field. 

4. Concluding Remarks 

We have obtained a radial equation for the eigenvalue problem that gives 
the energy levels for the quasi-stationary states of the hydrogen atom. 
Instead of  trying to solve it, we have estimated the magnitude of the shifts 
of  the levels from the usually considered energy spectrum, obtained for 
stationary states from the Dirac equation; we find that these shifts are 
small, as expected. In particular, the shift for the 2sl/2 level is of the order of  
~6 log ~ and that of the 2pl/z is of  the order of ~6 with a small coefficient, and 
this is small even compared to the Lamb shift. It falls within the order of 
magnitude of a large number of  corrections to the Lamb shift, which are 
still largely open to question, especially within the context of  a new theory. 

The bulk of the Lamb shift should be obtained when we consider the 
much more complicated problem of the interaction of  two charged particles 
and a dynamical electromagnetic field. 

Appendix 

In this Appendix we collect a number of useful mathematical~ relations 
and derivations, mainly for the operators ~ and J~t. 

We define an operator that is a function of/~ by the relation (Margenau 
& Murphy, 1964) 

~ (E ) f (x )  = (2zr) -3 f d s k exp [ik.x] ~(k0) 

x ( d3 x '  exp [ - ik .  x ' ] f (x ' )  (A. 1 ) 
d 

where 
k0 = (k 2 + mE) 1/2 = (K 2 + mE) I/a (A.2) 

"~ We assume that the mathematical conditions that are necessary for the existence of 
integrals and that allow interchange of orders of integrations are satisfied. We do not 
claim more mathematical rigor than is usual for a paper in physics. 

17 
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We use spherical coordinates r, 0, q~ for x and K, 0, ~ for k to expand 

exp [ik.x] = 4~r ~ i'j,(Kr) ~ Yr*(O, (o) Yt"(O, 4) (A.3) 
I=0 m = - I  

and substitute it into equation (A. 1); the orthonormality of  the spherical 
harmonics readily gives, for a function of the form a(r) Ylm(O, ~), 

q~(ff~) a(r) Ytm(O, (o) = Y~m(O, 4) qb(ff~z) a(r) (A.4) 

where/~l is defined by 

y ~(/~)a(r)  --- (2/~r) K2 dK]~(Kr)CP(ko) f r'2 dr'jz(Kr')a(r ') (A.5) 
o o 

We can use this equation to show that, for 

@(g) =/~2 _ m 2 = _172 (A.6) 

we have 
q)(ff~t) = -r-l(d2/dr 2) r + 1(l + 1)/r 2 (A.7) 

If  we set q~(Ez) = 1 in equation (A.5), we find that 

co 

~(r - r ') = r'Z(2/~r) ~ K s dKj,(Kr)j~(Kr') (A.8) 
o 

We find the formula for integration by parts, 

eo oo 

f r 2 dra(r)~(g~)b(r)= f r 2 drb(r)~(g,)a(r) (A.9) 
o o 

by rearranging the order of integrations. 
If  we designate by a bar on top of a function its spherical Hankel transform 

(2.21), we can use equation (A.8) to show that 

~(ff~l) a(K) = ~(k0) a(K) (A. 10) 

Since ~(Et) commutes with ~.p, equation (2.16) implies thatt  

[d/dr+(1 +K)/r]~(g~)=q)(ff~1)[d/dr+(l + K)/r] (A,11) 

where l is determined by x through equation (2.18), and 

i(x) = I(-K) (A.12) 

I We point out that equation (A.11), as well as others, can be derived directly from the 
properties of the spherical Bessel functions. 



QUASI-STATIONARY STATES OF HYDROGEN 261 

When we change the variable of  integration to p = o~mr, we have to 
replace the operator El by 4 ,  defined by 

cO 

~b(~) a(p) = (2/zr) f K 2 dKjz(Kp) 
0 

03 

• @[(1 + o,2K2) 1/2] f p'Zdp'j~(Kp')a(p') (A.13) 
0 

As a simple example of an expansion in ~ that appears to lead to a 
divergent integral, we compute 

[[ q6 -) ][ = f d3 xq6-)*(x) qo~-)(x) (A. 14) 

for the lsl/2 level. We use equations (3.17) and (3.5), and proceed as in 
Section 3 to obtain 

oo 

Ilq6-)tl = [�88 - w) / / ' (2y  + 1)] f p2dp 
0 

• [di'l/2(~ 1 + 1)-1/2(~1 -- W-o~2/p)pV-le-p]2 (A.15) 

If  we use equation (3.27) to expand ~l, we obtain an integrand that  goes as 
p-2 at the origin, and the integral would diverge linearly. This is clearly 
wrong, since 

Ilq0~+']] + llq6-'ll = 1 (A.16) 

When we proceed without this expansion, we user 

= [ K s aKa(K) (K) (A.17) 
0 0 

for these spherical Hankel transforms to obtain 
cO 

][qo~-)]l = [�88 - W)/_P(2~, + 1)1 f K2dK[~(K)] 2 (A.18) 
0 

where equations (A.10) and (E'-8.6.6) give 
6(K) = (I + ~2K2)-1/4 [(1 + 0:2K2) 1/2 + 1]-l/2K -I/2 

x (1 + K2) -7/2-3/4 _P(,)I + 2) {(~ + 2) [(1 + Cr K2) 1/2 -- W]  

x P ~ 3 + ~ 2 [ ( 1  + K2) -I/2] - ~2(1 + Kz)l/2p-~3/lZ/2[(1 + K2)-1/2]} 
(A.19) 

We note that 4~(K) goes as K -3 for large K, and the integral in equation 
(A. 18) converges; on the other hand, it is clear that an expansion in a would 
give an integrand that goes as K -~ to lowest order, which makes the integral 
diverge linearly. 

~ We obtain equation (A.17) with the help of equations (2.21) and (A.8). 
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A similar expansion for the level shift of an s-state leads to a logarith- 
mically divergent integral. We also note that an estimate of the Lamb shift'~ 
requires the introduction of cutoffs to obtain an a5 log a term, which makes 
us wonder whether formal expansions in the coupling constant might not be 
responsible for at least some of the difficulties with divergences in quantum 
electrodynamics. 

A simple example of such an integral that can be done exactly is 

~f dx (1 -}- 0~2) I/2 = log 1 +  = - l o g  o~ + log2 + � 8 8  + . . .  (A.20) 
x(1 + ~g 2x2) 1/2 ~z 

1 

We find that the coefficient of log ~ does not depend on the exact form of the 
integrand. For instance, 

f dx vo: 2 --~ log 1-~-v~ a = - l o g ~  - � 8 9  + � 89  2 -1- " " " (A.21) 
x(1 + F0~2X 2) 

1 

which for v = 1 is obtained when we have two such convergence factors in 
the denominator, and for v = �89 corresponds to the expansion of the square 
root in equation (A.20). 

Since 
log e ~ -4 .92  (A.22) 

we do not expect to get a good approximation of an integral unless we also 
compute the term independent of e, but we do not know of a general method 
to find it. 
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